

HIROSHIMA UNIVERSITY

2022年11月28日(月) 化学工学会 超臨界流体部会 2022年度基礎セミナー

超臨界CO2系の相平衡の測定と計算技術 -計算技術-

広島大学 大学院先進理工系科学研究科

化学工学プログラム・助教

宇敷 育男

Corresponding author: iushiki@hiroshima-u.ac.jp

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 本日の内容

1. 相平衡計算 一般

- (i) 相平衡の条件
- (ii) 超臨界CO2系に用いる状態式の例
 - 最近の状態式利用のトレンド
 - Peng-Robinson 式
 - PC-SAFT式

2. 超臨界CO2系の相平衡計算技術:具体例

- (i) 超臨界CO₂を含む高圧気液平衡の計算例
- (ii) 超臨界COっに対する溶質溶解度(高圧固気平衡)の計算例
- (iii) 超臨界CO₂系-ポリマー系相平衡の計算例

3. 超臨界CO2系の相平衡計算技術:まとめ

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 本日の内容

1. 相平衡計算 一般

- (i) 相平衡の条件
- (ii) 超臨界CO2系に用いる状態式の例
 - 最近の状態式利用のトレンド
 - Peng-Robinson 式
 - PC-SAFT式

2. 超臨界CO2系の相平衡計算技術: 具体例 (i) 超臨界CO2を含む高圧気液平衡の計算例 (ii) 超臨界CO2に対する溶質溶解度(高圧固気平衡)の計算例 (iii) 超臨界CO2系-ポリマー系相平衡の計算例

3. 超臨界CO2系の相平衡計算技術:まとめ

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.1.1 相平衡の基準: 気液平衡を例に

気液平衡計算とは、相平衡の基準を満たす *T, P, x, y*の組み合わせを探すこと

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.1.1 相平衡の基準: 高圧気液平衡の場合

気相に状態式を使用する必要があるため、液相も状態式を用いるのが便利。

$$\varphi_i^{\mathrm{V}} y_i P = \varphi_i^{\mathrm{L}} x_i P$$

←Cubic型状態式(Peng-Robinson, SRK等)により フガシティー係数 φ_i を求める場合

←摂動論型状態式(PC-SAFT等),格子流体理論(Sanchez-Lacombe等)等より化学ポテンシャル*µ*iを直接求める場合

✓超臨界CO₂系(CO₂の臨界温度,臨界圧力以上の温度圧力条件下) においては,高圧気液平衡に基づく計算が基本

✓その際に、状態式を用いてフガシティー(係数)または 化学ポテンシャルを求めるアプローチが原則

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.1.2 超臨界CO2系に用いる状態式: 最近のトレンド

各キーワードでヒットした出版論文数 (Web of Science)

6

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.1.2 超臨界CO2系に用いる状態式: Peng-Robinson式①

Peng-Robinson式[1]
$$P = \frac{RT}{V_{\rm m} - b} - \frac{a}{V_{\rm m} (V_{\rm m} + b) + b(V_{\rm m} - b)}$$

[1] D.Y. Peng, D.B. Robinson, *Ind. Eng. Chem. Fundam.*, 15 (1976) 59-64.

✓ 対応状態原理に基づくCubic 型状態式 (van der Waals式の改良版)
 ✓ 簡便かつ比較的精度良く主に低分子系の高圧相平衡を表現可能

一般的に、以下の混合則(van der Waals1流体混合則)が用いられる。

$$\begin{aligned} a &= \sum_{i} \sum_{j} x_{i} x_{j} a_{ij} \\ b &= \sum_{i} \sum_{j} x_{i} x_{j} b_{ij} \\ b &= \sum_{i} \sum_{j} x_{i} x_{j} b_{ij} \\ c &= \frac{b_{i} + b_{j}}{2} \end{aligned}$$

$$k_{ij} : 異種分子間相互作用パラメ-タ \\ (実験値を良好に表現するように 調節される。状態式が異なると \\ k_{ij} は異なる値となる。) \\ k_{ij} &= k_{ji} , k_{ij} = 0 \end{aligned}$$

例えば2成分系では・・・

$$a = x_1^2 a_1 + 2x_1 x_2 (1 - k_{12}) \sqrt{a_1 a_2} + x_2^2 a_2$$

 $b = x_1 b_1 + x_2 b_2$

他にも様々な混合則が提案されている。 (状態式と同様に混合則は熱力学における近似モデルであり、正解はない。) 基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.1.2 超臨界CO2系に用いる状態式: Peng-Robinson式②

Peng-Robinson式[1]
$$P = \frac{RT}{V_{\rm m} - b} - \frac{a}{V_{\rm m} (V_{\rm m} + b) + b (V_{\rm m} - b)}$$

[1] D.Y. Peng, D.B. Robinson, *Ind. Eng. Chem. Fundam.*, 15 (1976) 59-64.

8

- ✓ 対応状態原理に基づくCubic 型状態式 (van der Waals式の改良版)
- ✓ 簡便かつ比較的精度良く主に低分子系の高圧相平衡を表現可能

van der Waals1流体混合則

- 各成分の純成分パラメーター: 臨界定数 (T_c, P_c), 偏心因子 ωの情報が必要
- ▶ これらパラメーターが入手できない成分(薬剤など)については各種推算法が提案 (Marrero-Gani法, Ambrose-Walton法など) ※ただし推算値の妥当性については検証困難なケースが多い

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.1.2 超臨界CO2系に用いる状態式: Peng-Robinson式③

Peng-Robinson(PR)式におけるフガシティー係数

$$\ln \varphi_{i} = \ln \frac{V_{m}}{V_{m} - b} + \frac{b_{i}}{V_{m} - b} + \frac{1}{2\sqrt{2}bRT} \left[2\sum_{j} x_{j}a_{ij} - \frac{ab_{i}}{b} \right] \ln \frac{V_{m} + (1 - \sqrt{2})b}{V_{m} + (1 + \sqrt{2})b} + \frac{ab_{i}}{2\sqrt{2}bRT} \left[\frac{1 - \sqrt{2}}{V_{m} + (1 - \sqrt{2})b} - \frac{1 + \sqrt{2}}{V_{m} + (1 + \sqrt{2})b} \right] - \ln Z$$

フガシティー係数 φ_i の計算方法の例

- (i) 臨界定数 (*T_{ci}*,*P_{ci}*), 偏心因子 ω_iを入力し各純成分*i*の*a_i*, *b_i*を算出する
- (ii) 混合則により混合系のa, bを算出する
- (iii) PR式 を解いて混合系のモル容積V_m(または圧縮係数Z)を求める
 ※V_mについての3次式なので,解は3つある(重解,虚数解含む)。
 気液平衡の計算では,液相,気相それぞれに適切なV_mの初期値を与え,Newton-Raphson法や挟み撃ち法を駆使して各相のV_mを求める

(iv) 上記の式に求めたV_mなどを代入して各成分,各相のフガシティー係数を算出

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 2.1.2 超臨界CO₂系に用いる状態式: PC-SAFT式①

PC-SAFT: Perturbed-Chain Statistical Associating Fluid Theory [1, 2]

- ✓ Gross and Sadowskiにより開発
- ✓ Perturbation of chain molecule (分子鎖: hard chainの摂動を表現)
- ✓ 非対称系(CO₂-ポリマーなど)を含む高圧相平衡の計算に適用可能

[1] J. Gross, G. Sadowski, *Ind. Eng. Chem. Res.*, **2001**, 40, 1244-1260.
[2] J. Gross, G. Sadowski, *Ind. Eng. Chem. Res.*, **2002**, 41, 5510-5515.

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 2.1.2 超臨界CO₂系に用いる状態式: PC-SAFT式②

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 2.1.2 超臨界CO₂系に用いる状態式: PC-SAFT式③

PC-SAFTにおける対ポテンシャル

➢PC-SAFT: Modified Square-well potential [1]

 m_i , $\sigma_i \rightarrow$ depend on molecular structure

 $\mathcal{E}_i \rightarrow$ related to interaction between molecules

[1] J. Gross, G. Sadowski, Ind. Eng. Chem. Res., 2001, 40, 1244-1260.

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 2.1.2 超臨界CO₂系に用いる状態式: PC-SAFT式④

PC-SAFT: Helmholtz エネルギーAにより記述 $a = \frac{A}{NkT}$

- \checkmark Pressure *p* and compressibility factor *Z*
- ✓ Density ρ
- \checkmark Chemical potential μ
- ✓ Fugacity coefficient ϕ
- ✓ Entropy S
- \checkmark Internal energy U
- \checkmark Enthalpy *H*
- ✓ Gibbs energy G

 $\mu_i = \left(\frac{\partial A}{\partial N_i}\right)_{T,V,N_{i\neq i}}$

 $p = -\left(\frac{\partial A}{\partial V}\right)_{T}$

$$S = -\left(\frac{\partial A}{\partial T}\right)_{\rm p}$$

U = A + TSH = U + pVG = H - TS

◇ 偏微分によりあらゆる熱力学物性を算出可能

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.1.2 参考: PC-SAFT式による純物質の飽和液密度・蒸気圧計算

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.1.2 参考: PC-SAFT式による2成分系高圧気液平衡の計算

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 **本日の内容**

相平衡計算一般
 (i) 相平衡の条件
 (ii) 超臨界CO₂系に用いる状態式の
 - 最近の状態式利用のトレンド

- Peng-Robinson 式

- PC-SAFT式

2. 超臨界CO2系の相平衡計算技術:具体例

(i) 超臨界CO2を含む高圧気液平衡の計算例

(ii) 超臨界CO2に対する溶質溶解度(高圧固気平衡)の計算例 (iii) 超臨界CO2系-ポリマー系相平衡の計算例

3. 超臨界CO2系の相平衡計算技術:まとめ

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 2.2.1 超臨界CO₂を含む高圧気液平衡の計算例①

CO2-ヘキサン系2成分系の高圧気液平衡[1]のPeng-Robinson (PR)式による計算

[1] Y.H. Li, K.H. Dillard, R.L. Robinson, Vapor-liquid phase equilibrium for carbon dioxide-n-hexane at 40, 80, and 120 .degree.C, Journal of Chemical & Engineering Data, 26 (1981) 53-55.

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 2.2.1 超臨界CO₂を含む高圧気液平衡の計算例②

▲ 自動保存 ● 方〕 → 演習1 ~																	
ファイル ホーム 挿	挿入 ページ レイアウト	数式 データ 校閲	表示自動化 開発 /	マレプ Acrobat													
ि प्रिंग मिले Visual Basic २७०	 マケロの記録 Ⅲ 相対参照で記録 ▲ マケロのセキュリティ 	PF Excel COM 1> PF(-) PF(-)	正式 正式 正式 正式 10/53 挿入 デザイン 回コードの マ モード 回 タイアロ	イ 表示 りの実行		(ティー 👼 インボート 👼 エクスボート											
	3-6	アドイン	コントロール		XML												
SUM v :	SUM V: X / fx =@PR_VLE_TP_kij_x1(\$J\$20,J23*10^6,\$B\$3)																
A	В	С	D E	F	G	Н	Ι	J	K	L	M	N	0	P	Q	R	S
1 condition			Experimen	t [1] Y.H. L	i, K.H. Dillard,	R.L. Robinso	n, Vapor-liq	uid phase equili	ibrium for car	bon dioxide-n-hexan	ne at 40, 80, a	and 120 .degree	a.C, Journal of Che	mical & Eng	gineering D	ata, 26 (1981) 53-55.
3 42	011		T[K]	313.15 v1.ovp.919.1	5 5 K	v1 ovn 313 15 K	т[К]	353.15		v4.ovp.959.15.K							
4 T	0.11	ĸ	x1	P[MPa]	y1	P[MPa]	x1	P[MPa] y1		P[MPa]							
5 property	CO2 H	lexane	(0.08 0.779135	5 0.949	0.779135	0.052	0.861875	0.815	0.861875			212 15 1				
b 7 Pc	7 974	3.025 MPa	(0.17 1.6548	3 0.972	2.44083	0.11	1.634115	0.894	1.634115			313.15 K				
8 Tc	304.12	507.6 K	0.	356 3.3096	5 0.982	3.3096	0.207	3.06138	0.934	3.06138	8						
9 component	1	2	(0.45 4.13	7 0.982	4.137	0.287	4.088735	0.943	4.088735	7			_	•		
1U ω 11	0.225	0.300 -	0.	574 5.054035 687 5.91030	0.984	5.054035	0.353	4.957505	0.948	4.957505	6				• -		
12			0.	829 6.708835	5 0.985	6.708835	0.422	6.708835	0.947	6.708835	E 5		_		+ -		
13							0.541	7.47418	0.949	7.47418	≥ 4		<u> </u>		- † -		
14							0.599	8.294685	0.945	8.294685	sure		•		_ ! -		
16							0.683	10.05291	0.93	10.05291	Less	•					
17							0.805	10.46661	0.906	10.46661		-			1		
18							0.821	10.65967	0.886	10.65967	1	-		/			
20			Peng-Robir T[K]	son 313 15	5		т[к]	353 15			0	0 02	0.4 0.6	0.8	1		
21				x1,calc 313.	15 K	y1,calc 313.15 K	(x1 ,calc 353.15 K		y1,calc 353.15 K		0 0.2	x CO2 [_]	0.0	1		
22			уI	P[MPa]	x1	P[MPa]	y1	P[MPa]					X COZ [-]				
23			0.868611	657 0.3	0.030931978	0.3	0.508698289	0.3 = 0	<pre>PR_VLE_TP_kii_x</pre>	1(\$J\$20,J23*10^6,\$B\$3)							
25			0.962066	194 1.2	2 0.135095182	1.2	0.883748953	1.5	0.109693819	1.5							
26			0.966406	752 1.4	0.157916359	1.4	0.906701269	2	0.148812238	2			353.15 K				
27			0.969621	273 1.6	0.180645809	1.6	0.920048837	2.5	0.187323251	2.5	12						
29			0.972002	488 2	0.225886567	2	0.934201339	3.5	0.262737057	3.5	12						
30			0.975559	789 2.2	0.248429141	2.2	0.938043988	3 4	0.299756546	4	10						
31			0.976812	089 2.4	0.270942883	2.4	0.94061692	4.5	0.336404407	4.5	- 8			•	I –		
33			0.978681	247 2.8	0.315962975	2.0	0.942236566	5.5	0.408892227	5.5	APa						
34			0.979378	415	0.338513977	3	0.943300237	6	0.444914961	6	4 6		-		t 🗆		
35			0.979953	769 3.	2 0.361126181	3.2	0.942897916	6.5	0.480940306	6.5	uns 4				i –		
37			0.980810	612 3.6	0.363828904	3.4	0.940243222	2 7.5	0.553616459	7.5	res				2 -		
38			0.981117	838 3.8	0.429642494	3.8	0.93784209	8	0.590696693	8	<u> </u>	~					
39			0.981356	663 4	0.452834002	4	0.934493049	8.5	0.628699936	8.5	0						
41			0.981653	309 4.4	0.476279328	4.2	0.929827679	9.5	0.709982729	9.5		0 0.2	0.4 0.6	0.8	1		
42			0.981722	108 4.6	0.52417236	4.6	0.912379561	10	0.756157063	10			x CO2 [-]				
43			0.981739	979 4.8	0.548767413	4.8	0.90933517	10.1	0.766299524	10.1							
45			0.981709	927 52	0.573915711	52	0.905768338	102	0.76923075	102							
46			0.98150	983 5.4	0.626338607	5.4	0.895982835	5 10.4	0.800325369	10.4							
47			0.981340	799 5.0	0.653895754	5.6											
40			0.98112	598 5.8 932 6	0.682565289	5.8											
50			0.980562	482 6.2	2 0.743795504	6.2					横(値)軸目盛	盛線					
51			0.980220	096 6.4	0.776326929	6.4											
53			0.980036	841 6.5 127 61	0.792911274	6.5											
54			0.979262	741 6.9	0.858008722	6.9											

18

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.2.1 超臨界CO2を含む高圧気液平衡の計算例③

計算プログラムの例 (エクセルVBA): 温度T, 圧力Pを与えて気相組成y1を算出

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 2.2.1 超臨界CO₂を含む高圧気液平衡の計算例④

Peng-Robinson(PR)式

$$P = \frac{RT}{V_{\rm m} - b} - \frac{a}{V_{\rm m} (V_{\rm m} + b) + b (V_{\rm m} - b)}$$

van der Waals1流体混合則

$$a = \sum_{i} \sum_{j} x_{i} x_{j} a_{ij} \quad a_{ij} = \left(1 - k_{ij}\right) \sqrt{a_{i} a_{j}}$$
$$b = \sum_{i} \sum_{j} x_{i} x_{j} b_{ij} \quad b_{ij} = \frac{b_{i} + b_{j}}{2}$$

[1] Y.H. Li, K.H. Dillard, R.L. Robinson, Vapor-liquid phase equilibrium for carbon dioxide-n-hexane at 40, 80, and 120 .degree.C, Journal of Chemical & Engineering Data, 26 (1981) 53-55.

このように高圧気液平衡から決定したk_{ij}とPR式を用いて対象成分のフガシ ティーを算出し,他の熱力学的モデルに組み込むなどのアプローチも可能 [2] [2] I. Ushiki *et al., J. Supercrit. Fluid.*, 189 (2022) 105719.

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 **本日の内容**

相平衡計算一般
 (i) 相平衡の条件
 (ii) 超臨界CO₂系に用いる状態式の例
 - 最近の状態式利用のトレンド
 - Peng-Robinson 式

- PC-SAFT式

2. 超臨界CO₂系の相平衡計算技術:具体例 () 超臨界CO₂を含む高圧気液平衡の計算例 (ii) 超臨界CO₂に対する溶質溶解度(高圧固気平衡)の計算例 (ii) 超臨界CO₂系-ポリマー系相平衡の計算例

3. 超臨界CO2系の相平衡計算技術:まとめ

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.2.2 超臨界CO2に対する溶質溶解度の計算例①

超臨界CO2中における溶質(金属前駆体)溶解度, yprecの計算[1]

- ✓ CO₂のPC-SAFT純成分パラメーター: 文献値より獲得 [2]
- ✓ 溶質の固体モル体積v^{solid},昇華圧 P^{sub}: 文献値より獲得 [3, 4, 5]
- ✓ Lorentz-Berthelot結合則 $\sigma_{ij} = \frac{1}{2} (\sigma_i + \sigma_j), \quad \varepsilon_{ij} = (1 k_{ij}) \sqrt{\varepsilon_i \varepsilon_j}$ ($k_{ij} = 0$)

超臨界CO2中の溶質(金属前駆体)溶解度, yprecの推算

[1] J.M. Prausnitz et al., Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd Edition (1998).

[2] N.I. Diamantonis, I.G. Economou, *Energy Fuels*, 25 (2011) 3334.

[3] P. P. Semyannikov *et al.*, *Thermochimica Acta*, 432 (2005) 91. [4] V.G. Minkina, *Russ. Chem. Bull.*, 42 (1993) 1462.
[5] S. Poston, A. Reisman, *J. Electron. Mater.*, 18 (1989) 79. [6] I. Ushiki *et al.*, *J. Supercrit. Fluid.*, 164 (2020) 104909.

P^{sub}: Sublimation pressure of metal precursor [3, 4] *v*^{solid}: solid molar volume of metal precursor [5]

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 2.2.2 超臨界CO₂に対する溶質溶解度の計算例②

PC-SAFTによる超臨界CO2中の溶質溶解度:計算プログラムの一例 (MATLAB)

e y

р

е

end

end

イター - C:¥Users¥Ushiki¥Dropbox (広島大学先進理工系科学研究科化学工学プロ)¥論文投稿¥Accept済み¥2020¥Metalprec_PC Validation_CO2_Decane_Gross_and_Sadowski_2001.m 🗶 fug_phi_z_PCSAFT_kij_v.m 🗶 PCSAFT_Cr_acac3 ⊡function [y2 calc, phi 2 calc, eta calc]=PCSAFT CO2 solubility calc(T calc, P calc, kij) %Global data global k R m1 sigma1 ipsk1 m2 sigma2 ipsk2... v2_solid dHsub Psubs Tsubs... k = 1.38064852E-23; %J K^-1 ボルツマン定数 R = 8.31446262;- %J/(mol K) '気体定数 %[1] J. Gross, G. Sadowski, Perturbed-Chain SAFT:An Equation of State Based on a Perturba %Ref.[1] N.I. Diamantonis, I.G. Economou, Evaluation of Statistical Associating Fluid Th m1 = 2.6037; % sigma1 = 2.555; % ipsk1 = 151.04; % n_calc=numel(P_calc); **⊡for** i=1:n calc P=P calc(i)*10^6; % MPa T=T calc; % K ※-----↓Newton法によるx2 calc:溶質溶解度の計算↓---ips=1E-10; %Newton法の数値微分の刻み x2 s=1E-5; %x2 calcの初期値 F=10; %Newton法の目的関数の初期値 counter=0; while abs(F)>1E-10 fprintf('Just finished iteration F #%d¥n', counter); counter = counter + 1; if counter>100 break end

	<pre>%↓初期値x2_sに対するフガシティー係数φiの計算↓ x1_s=1-x2_s; x=[x1_s x2_s]; [fugacity, eta, phi, Z]=fug_phi_z_PCSAFT_kij(T,P,x,kij); phi_2= phi(2); %</pre>
	%↓溶質溶解度:x_soluteのフガシティーモデル式による計算↓ x_solute=(p2)/(phi_2*P)*exp(v2_solid/(R*T)*(P-p2));
	%↓Newton法に使う微分値の計算↓ x2_s_ips=x2_s+ips; x1_s_ips=1-x2_s_ips; x_ips=[x1_s_ips x2_s_ips]; [fugacity_ips, eta_ips, phi_ips, Z_ips]=fug_phi_z_PCSAFT_kij(T,P,x_ips,kij); x_solute_ips=(p2)/(phi_ips(2)*P)*exp(v2_solid/(R*T)*(P-p2));
	dx_solute_dx2=(x_solute_ips-x_solute)/(x2_s_ips-x2_s); %
	~ %↓Newtonによる計算↓ F=x_solute-x2_s; %Newton法の目的関数 dF_dx2=dx_solute_dx2-1; %x2_sによる微分値 x2_s=x2_s-F/dF_dx2; %Newton法の漸化式
nd 2_c hi ta	%

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 2.2.2 超臨界CO₂に対する溶質溶解度の計算例③

Fig. Prediction of solubility of metal precursors in scCO₂ [1,2] by PC-SAFT [3]

PC-SAFTによる推算モデル: 超臨界CO₂中における金属 前駆体の溶解度の傾向を再現可能 (*k_{ij}*=0) [3]

[1] M. Haruki *et al., Fluid Phase Equilib.*, 280 (2009) 49. [2] M. Haruki *et al., J. Chem. Eng. Data*, 56 (2011) 2230.
[3] I. Ushiki et al., *J. Supercrit. Fluid.*, 164 (2020) 104909.

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 **本日の内容**

相平衡計算一般

 (i) 相平衡の条件
 (ii) 超臨界CO₂系に用いる状態式の例
 - 最近の状態式利用のトレンド
 - Peng-Robinson 式

- PC-SAFT式

2. 超臨界CO2系の相平衡計算技術:具体例

(i) 超臨界CO₂を含む高圧気液平衡の計算例 (ii) 超臨界CO₂に対する溶質溶解度(高圧固気平衡)の計算例 (iii) 超臨界CO₂系-ポリマー系相平衡の計算例

3. 超臨界CO2系の相平衡計算技術:まとめ

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.2.3 超臨界CO2系-ポリマー系相平衡の計算例①

PC-SAFT 式 [1]

[1] J. Gross, G. Sadowski, Ind. Eng. Chem. Res., 40 (2001) 1244-1260.

▶ PC-SAFT: 各成分の純成分パラメーターが必要

✓ CO₂ のPC-SAFT純成分パラメーター[2]
○ 飽和液密度及び飽和蒸気圧へのフィッティングより決定

[2] N.I. Diamantonis, I.G. Economou, *Energy Fuels*, 25 (2011) 3334-3343.

Table. PC-SAFT parameters of CO_2 used in this study.

<i>m</i> _i [-]	σ_i [Å]	$\boldsymbol{\varepsilon}_{i}/k_{\mathrm{B}}$ [K]	Reference
2.6037	2.555	151.04	[2]

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.2.3 超臨界CO2系-ポリマー系相平衡の計算例③

✓ CO₂の化学ポテンシャル (µ₁:PC-SAFTにより算出)に関する平衡条件

- ✓ Lorentz-Berthelot 結合則: $\sigma_{ij} = \frac{1}{2} (\sigma_i + \sigma_j)$, $\varepsilon_{ij} = (1 k_{ij}) \sqrt{\varepsilon_i \varepsilon_j}$
- ✓ 異種分子間相互作用パラメーターk_{ij}をフィッティングパラメーターとしてCO2溶解度を相関

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.2.3 超臨界CO2系-ポリマー系相平衡の計算例④

PC-SAFTによる超臨界CO2のポリマーへの溶解度:計算プログラムの一例 (MATLAB)

Z 17	イター - C:¥Users¥Ushiki¥Dropbox (広島大学先進理工糸科学研究科化学工学プロ)¥請又投稿¥Accept済(
+12	fug_phi_z_PCSAFT_kij_v.m 🗶 PCSAFT_Cr_acac3_in_4organics_calc_kij0.m 🗶 PCSAFT_	32
1	□ function [Solubility, w1, x1] =SAFT_solubility_CO2(n_polymer, T, P, kij)	33 - [fugacity_1, mu_1, eta_1, phi_1, Z_1]=fug_phi_z_PCSAFT_kij_1(T,P,x,kij);
2	4	34 - [fugacity_v, mu_w, eta_w, phi_w, Z_y]=fug_phi_z_PCSAFT_kij_v(T,P,y,kij);
3		35
4	%入力/	36 - [fugacity_l_ips, mullips, eta_lips, phillips, Z_lips]=fug_phi_z_PCSAFT_kij_l(T,P,x_ips,kij);
5		37 - fugacity_1_polymer=fugacity_1(1);
6 -	P = P * 10 ^ 6; %[Pa]	38 - fugacity_1_gas=fugacity_v(1);
7 -	T = T + 273.15; %[K]	<pre>39 - fugacity_1_polymer_ips=fugacity_1_ips(1);</pre>
8		40 - fugacity_l_gas_ips=fugacity_v(1);
9	% assume w2	
10 -	[<mark>m2, sigma2, ipsk2</mark> , Mw]=SAFT parameter polymer(n polymer) ;	42 %↓Newton法に使う成分値の計算↓
11		43 - Fmu = Tugacity_l_bolymer - Tugacity_l_gas;
12 -	M w(1) = 44.0095; %CO2	44 - rmu_rps = rugacity_rpolymer_rps = rugacity_rgas_rps;
13 -	M w(2) = Mw; %polymer	40 armu - (rmu - (rmu - / rbs_x),
14		47 ダー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
15 -	w2 = 0.8;	
16 -	w1 = 1 - w2;	49 - x2=1-x1;
17		$50 - x = [x1 \ x2];$
18 -	x1=(w1/M_w(1))/(w1/M_w(1)+w2/M_w(2));	51 - Count = Count + 1;
19 -	x2=(w2/M_w(2))/(w1/M_w(1)+w2/M_w(2));	52 %
20		53 - if Count>50
21 -	x=[x1 x2];	_ 54 - msgbox('PC-8AFT式による相平衡が解けません');
22 -	ips_x1 = x1 * 0.0000001;	55 - break
23		56 - end
24 -	y=[1 0];	
25 -	Count = 0;	$\begin{bmatrix} 08 & - & 0 \end{bmatrix} = \begin{bmatrix} 010 & 0 \\ 0 & - & 0 \end{bmatrix} = \begin{bmatrix} 02 & 0 \\ 0 & - & 0 \end{bmatrix} = \begin{bmatrix} 02 & 0 \\ 0 & - & 0 \end{bmatrix}$
26 -	Fmu=10;	03 w2-x2-m_w(z)/(x)+m_w(1)/x2+m_w(2)/; 80 = 101 =
27		81 - 80
28 -	🔄 while abs(Fmu)>1E-7	62
29 -	x1_ips = x1 + ips_x1;	63 end
30 -	x2_ips=1-x1_ips;	
31 -	x_ips=[x1_ips x2_ips];	
32		

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.2.3 超臨界CO2系-ポリマー系相平衡の計算例5

PC-SAFTによるPCL*へのCO₂溶解度相関結果[1]

[1] I. Ushiki *et al., J. Supercrit. Fluid.,* 181 (2022) 105499.

✓ ARD* 1.5%以内で 相関可能

* Average relative deviation

$$\operatorname{ARD}[\%] = \frac{1}{ND} \sum_{k=1}^{ND} \frac{\left|S_{\operatorname{sat},k}^{\exp} - S_{\operatorname{sat},k}^{\operatorname{calc}}\right|}{S_{\operatorname{sat},k}^{\exp}} \times 100$$

Fig. 1 Measurement and correlation results of CO₂ solubilities in PCL using PC-SAFT

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.2.3 超臨界CO2系-ポリマー系相平衡の計算例⑥

相関により決定した異種分子間相互作用パラメーターk_{ii} [1]

✓ k_{ij} (PC-SAFT): k_{ij} (Sanchez-Lacombe Eq. [2]) より も温度依存性が比較的小さい

[2] I.C. Sanchez, R.H. Lacombe, Macromolecules, 11 (1978) 1145-1156.

他の温度領域への外挿性を検討

基礎セミナー 2022: 超臨界CO2系の相平衡の測定と計算技術. 2.計算技術 2.2.3 超臨界CO2系-ポリマー系相平衡の計算例⑦

Fig. 1 Prediction results of CO₂ solubilities in PCL* [1] using PC-SAFT

[1] E. Markocic *et al.*, *Ind. Eng. Chem. Res.*, 52 (2013) 15594-15601.

✓ PC-SAFTによる推算モデル: 低温でのCO₂溶解度に外挿可能 [2]

[2] I. Ushiki et al., J. Supercrit. Fluid., 181 (2022) 105499.

基礎セミナー 2022: 超臨界CO₂系の相平衡の測定と計算技術. 2.計算技術 2.3 超臨界CO₂系の相平衡計算技術: まとめ

本セミナーのまとめ

- 主に状態式 (Peng-Robinson, PC-SAFT)を用いた超臨界 CO₂系の相平衡計算方法・技術について,実例を示しながら 紹介 (近年では機械学習による手法も盛ん:例えば[1,2])
 [1] T. Rezaei et al., Scientific Reports, 12 (2022). [2] Y. Zhang, X. Xu, Chemical Physics, 550 (2021).
- 初心者が計算を実施したい場合は、理論を理解した上で実際に やってみるのが近道(大規模な計算で無ければエクセルの関数 やソルバーのみでも可能:プログラミングはあくまで手段).
- ▶ 他者が作ったプログラムを利用する際にも、自分で理論及び計算方法を理解・検証する必要あり(間違ったプログラムかもしれない)
- ▶ 超臨界CO₂関係の平衡物性計算について興味のある方は 宇敷*まで気軽にご相談ください.

* E-mail: iushiki@hiroshima-u.ac.jp