超臨界流体部会 第14回サマースクール (2015/8/11)

グリコール溶媒中でのソルボサーマル反応 を利用した金属酸化物ナノ結晶の合成

京都大学 触媒·電池元素戦略研究拠点 細川三郎

1. 無機固体合成法の概要

2. 有機溶媒を用いたソルボサーマル法について

3. グリコール溶媒中でのソルボサーマル法について

4. グリコサーマル合成した金属酸化物ナノ結晶の応用
・形態が制御されたYBO₃:Euの蛍光特性
・準安定相希土類一鉄複合酸化物の触媒特性

5. 最後に

代表的な金属酸化物合成法

ソルボサーマル法

溶液または超臨界相をベースとする高温反応

溶媒	水	アルコール	グリコール
合成法	水熱法	アルコサーマル法	グリコサーマル法

特徴 ⇒ 焼成過程がなく、温和な条件での合成が可能

有機溶媒中での水熱結晶化

Hycom(<u>Hy</u>drothermal <u>C</u>rystallization in <u>O</u>rganic <u>M</u>edia)法

H. Kominami, M. Kohno, Y. Takada, M. Inoue, T. Inui, Y. Kera, Ind. Eng. Chem. Res., 38 (1999) 3925.

6

7

M. Inoue, m. Kimura, T. Inui, Chem. Commun., (1999) 957.

Solvothermal反応に用いられる溶媒

- ✓ Alcohol: CH_3OH , C_2H_5OH , C_3H_7OH , · · ·
- ✓ Glycol: HOCH₂CH₂OH, HO(CH₂)₄OH, ···
- ✓ Paraffins: *n*-Hexane, Hexadecane, · · ·
- ✓ Aromatics: Benzene, Toluene, Xylene, · · ·
- ✓ Ethers: Dibutyl Ether, THF, 1,4-Dioxane, · · ·
- \checkmark Nitriles: CH₃CN, C₆H₅CN, ...
- ✓ Amines: BuNH₂, Bu₂NH, Bu₃N, · · ·
- ✓ Aprotic Polar Solvents: DMSO, DMF, HMPA, ····
- \checkmark Others: CH₃NO₂, (CH₂)₄SO₂, Ethanolamines, ...

有機溶媒の多様性

どのようなものが得られるか

- >酸化物:α-Al₂O₃, TiO₂, ZrO₂, Y₃Al₅O₁₂, ···
- ▶ カルコゲニド: CdS, CdSe, CdTe, ···
- \succ ME (E=P, As, Sb, N, $\cdot \cdot$): InP, GaN, InSb, $\cdot \cdot \cdot$
- Microporous Materials: Silica sodalite, · · ·
- Polyoxometalate
- Organic-Inorganic Hybrid Materials
- Carbon Nanotubes
- Metal Nanoparticles

グリコサーマル合成したEr₃Al₅O₁₂

Y₃Al₅O₁₂のリートベルト解析結果

	Ionic size		Site occupacy						Unit cell		
Sample	of RE ³⁺	96h	96h 16a		24d		24c		parameter	RE/Al	$R_{\rm wp}$
	(Å)	0	Al	RE	Al	RE	RE	Al	(Å)		-
P(Gd-b) ^{a)}	0.938	0.906	0.979	0.021	0.748	0	0.971	0.029	12.141	3/4.36	6.30
P(Y-b)	0.900	0.888	0.940	0.060	0.701	0	0.810	0.190	12.144	3/5.36	4.39
P(Yb-b)	0.868	0.942	0.819	0.181	0.846	0	1	0	12.106	3/3.73	4.71
P(Gd-b-cal)a)	0.938	1	0.872	0.128	1	0	1	0	12.144	3/4.37	5.85
P(Y-b-cal)	0.900	1	0.773	0.227	1	0	1	0	12.110	3/3.95	6.27
P(Yb-b-cal)	0.868	1	0.750	0.250	1	0	1	0	12.075	3/3.86	6.03

^{a)} 種結晶としてYAGを加えて反応

S. Hosokawa, Y. Tanaka, S. Iwamoto, M. Inoue, J. Alloys Compd., 451 (2008) 309.

結晶核生成と結晶成長

Summary グリコール中でのソルボサーマル反応 1,6-ヘキサンジオール AI(OH)₃ α -Al₂O₃ 1,4-ブタンジオール $AIO(OH)_{x}(O(CH_{2})_{n}OH)$ AI(OH)₃ 1,4-ブタンジオール Y₂Al₅O₁₂ $3Y(CH_3COO)_3 \cdot 4H_2O + 5AI(O'Pr)_3$ REPO₄, RE₃Ga₅O₁₂, HolnO₃, *h*-REFeO₃, NaNbO₃, RE₃NbO₇, Ca₂Ta₂O₇, Ca₂Nb₂O₇, TiBaO₃, ZnNb₂O₆, ZnAl₂O₄ ZnFe₂O₄, Zn₂TiO₄, FeNbO₄, FeTaO₄, O Ac+ REVO₄, Zn₂SiO₄, etc. M. Inoue, J. Phys.: Condens. Matter., 16 (2004) S1291.

YBO₃:EuのXRDパターンとSEM像

ソルボサーマル合成したYbFeO。の熱安定性

39

種々の触媒との比較

Summary

最後に RE₂O₃ Ca₂Nb₂O₇ CeO₂ 触媒材料 光触媒 500 nm *h*-YbFeO₃ YBO₂ 磁性材料 Zn₂SiO₄:Mn NaNbO₃ 蛍光材料 **圧電材料** Y₃Al₅O₁₂ 常法では得られない金属酸化物ナノ結晶が、 様々な分野で適用されることを期待している。 43

S. Hosokawa, Y. Masuda, T. Nishimura, K. Wada, R. Wada, M. Inoue, Chem. Lett., 43 (2014) 874.42