2015.08.10 第14回サマースクール

超臨界流体製膜法(SCFD)のプロセス設計 に向けた基礎物性:原料溶解度と拡散係数

東京大学マテリアル工学専攻 百瀬 健

・様々な製膜技術

・超臨界流体中で製膜を行う利点

・SCFDのデバイス応用

・プロセス制御に向けた課題抽出
 ・H₂/CO₂混合流体中における原料溶解度
 ・高温環境における拡散係数

様々な製膜技術

	液体中	気体中	超臨界流体中
物理現象	融掖法 溶液法	PVD (真空蒸着, スパッタリ ング, スピンコーティン グなど)	RESS
化学反応	電解めっき	CVD	SCFD 電界めっき

- •PVD; Physical Vapor Deposition
- •CVD; Chemical Vapor Deposition
- •RESS; Rapid Expansion of Supercritical Solution

1

•SCFD; SuperCritical Fluid Deposition

CVD

(1)基板表面への反応ガスの拡散(2)反応ガスの基板表面への吸着(3)基板表面における化学反応(4)副生成ガスの表面からの脱離

特性比較:物理製膜と化学製膜

•物理製膜 製膜物質=堆積物質

> 基板に付着した瞬間に膜化 付着確率=1

供給粒子の方向バラツキ ⇒膜厚不均一

化学製膜

製膜物質(原料)≠堆積物質

3

吸着・脱離を繰り返す ある瞬間に反応し膜化する 付着確率<<1

⇒膜厚均一

CVDにおける課題

注:全ての系において起こるわけではない

•雰囲気:真空 •原料供給 ⇒原料物質を気化させて供給 ⇒蒸気圧が低いと十分な原料を供給できない •反応系制御 ⇒使用できる添加剤も限られている ⇒制御の自由度が低い ・プロセス温度 ⇒高温となりやすい ⇒基板への熱ダメージ •膜純度 ⇒副生成物が脱離しにくい

超臨界流体を使う利点

SCFDでの検討例

Film Deposition:

- Metal: Cu, Ag, Ni, Co, Pt, Ru
- Metal Alloy: CuAg
- Metal Oxide: SiO₂, TiO₂, Ta₂O₅
- Complex Oxide: SrTiO₃ (STO), SrBi₂Ta₂O₉ (SBT)
- Conductive Oxide: SrRuO₃ (SRO)

SCFDを用いた高アスペクト比構造形成

3次元高密度キャパシタ

キャパシタ特性

* Width = $2\mu m$, depth = 106 μm

キャパシタ構造	平面	3次元 (Line/Space=2/1.5um, AR=53)	
表面積 [cm ²]	9.0x10 ⁻⁴	3.2x10 ⁻² (平面構造の61.6倍)	
実測キャパシタンス [pF]	31 🗙	70 2200	
算出キャパシタンス [pF]	31.1	2564	

MEMSピラニゲージの設計指針

✓ヒータ/シンク距離を50nm以下に微細化できれば大気圧以上の測定が可能

SCFDによるナローイング

11

Si

Si基板の表面にヒータ/シンクを形成→MEMSピラニゲージ
・課題:ボッシュエッチングの最小溝幅=500nm
・要求:溝幅<50nm,溝両壁面の接触なし
・SCFDをトレンチナローイング手法として使用
(均一性,膜平坦性の利用)

✓60気圧での動作を実現

SCFD技術の現状

- ・埋め込み性の実証;完了
- ・埋め込み性の基本原理の理解;完了
- ・デバイス実証による出口イメージ化;進行中
- ・材料系の拡張(他の技術では製膜出来ないものを可能に);進行中

•大型装置化;進行中

・狙った特性を具現化できる知識体系;本発表

プロセス制御に向けた課題抽出

※検討の最も進んでいるCu-SCFDを例として

•原料供給

・製膜(埋め込み)条件

・成長速度:原料濃度,H₂濃度,温度
 低濃度での速度論は報告あり
 溶解度を含めた最適条件は未検討
 ・拡散:H₂濃度,温度,圧力

未検討 拡散を含めた最適条件は未検討

13

溶解度測定手法

光路長8cm 内容積27.8cc(セル+配管)

- 1. 観測セル内に所定量の固体原料, スターラーを封入
- 2. リファレンススペクトルを測定
- 3. 所定圧力, 温度まで加圧, 加熱
- 4. 内部を撹拌した後に停止
- 5. 吸光スペクトルを測定し, 吸光度へ変換

密度計算 CO₂:Span-Wagner状態方程式 H₂:NIST Chemistry of WebBook

モル吸光係数の推算

溶媒条件 温度40°C, 圧力15MPa(17.7mol/L) H₂なし

ε(Cu): 43.1 mol⁻¹Lcm⁻¹ ε(Mn): 311.1 mol⁻¹Lcm⁻¹ [ref. 吸光度の時間依存性]

Cu(tmhd)₂ T: 100°C, P: 15MPa, w/o H₂ (Most reactive condition in this study 1^{st} order kinetics, $k_d = 2.3 \times 10^{-5} [s^{-1}]$)

溶解度の時間による変動=数% ⇒熱分解などの影響は無視できる

scCO₂中でのCu原料溶解度

混合流体中における溶解度測定

 $scCO_2$ /溶質系では部分モル容積 V_{lm} <0

 $scCO_2/固相系のV_{Im} = 10~100 cc/mol scCO_2/気相系のデータはない$

•密度比率

 $Cu(tmhd)_2/scCO_2: <10^{-4}$ H₂/scCO₂: <0.1

セルへの供給順: $H_2 \rightarrow CO_2$ H₂密度は保証できる

V_{im} < 0の場合, CO₂密度は計算値より高い ⇒溶解度が高く測定される可能性あり

V_{im} > 0の場合, CO₂密度は計算値より低い ⇒溶解度が低く測定される可能性あり

18

H₂添加によるCu原料溶解度への影響

[ref. Press. dependence in pure scCO₂]

T: 40, 100°C Total press.: 15MPa

T: 40°C, w/o H₂

同一H₂分圧における溶解度を比較 ⇒H₂添加により溶解度の低減を確認

混合流体中でのCu原料溶解度

[圧力依存性]

T: 40°C H₂モル分率: 0, 1.2x10⁻², 2.3x10⁻³ [温度依存性]

P: 15MPa H₂モル分率: 0, 1.2x10⁻², 2.3x10⁻³

相関式

[MMST式] 各H₂濃度の流体を ーつの流体として適用

 $T\ln(y_2P) = A + B\rho_1 + CT$

[Sauceau式] 全てのH₂濃度へ適用可能

$$T\ln\left(\frac{y_2P}{P^{\text{std}}}\right) = A_4 + B_4\rho_{\text{f}} + C_4T + D_4y_3.$$

添加物質と溶解度への影響

[Cu原料]

各物質共に原料溶解度の低下を確認 O₂を用いた酸化膜形成などでも注意が必要

原料供給指針

0次反応における超高アスペクト比製膜 25

実験結果(MC内の膜厚分布) をフィッティング ⇒ 拡散係数Dの同定

温度 [℃]	D [m ² /s]	
220	2×10 ⁻⁷	
200	8×10 ⁻⁷	
190	3×10 ⁻⁷	
180	8×10 ⁻⁷	

まとめ

•原料供給 ・混合、温度変化に伴う溶解度変化 H₂混合による溶解度低下に注意 ・混合,温度変化に伴う体積変化 要追加検討 (\mathbf{B}) CO₂/H₂混合流体の溶解度の温度依存性 Η, $P CO_2/H_2混合流体の溶解度$ $\mathcal{M}\mathcal{M}$ Pressure Heat Controller Exchanger (\mathbf{B}) Reactor CO₂流体の溶解度 原料供給部 CO_2 ビア/トレンチへの埋め込み現象 >>>製膜(埋め込み)条件 拡散 •成長速度:原料濃度,H₂濃度,温度 原料濃度 H。濃度により埋め込み性が大きく左右される •拡散:H₂濃度,温度,圧力 原料消費 進行中 拡散を含めた統一的な理解へ繋げたい 原料の拡散と消費のバランス →成長速度(膜厚)分布が決定