水熱・亜臨界水・超臨界水について 概要 ✓液相:高温高圧状態の水の液相を活用する技術を表した言葉 東北大学 環境保全センター 渡邉賢 ✓水熱や亜臨界水:水の液相条件 ✓バイオマスやプラスチックの反応がどのように進むのか 1999年 東北大学大学院工学研究科 化学工学専攻 博士後期課程修了 ✔水の状態図の理解 ✓水の機能性に与える温度、圧力の影響 博士(工学)取得 ✓バイオマスやプラスチックに関わる分子の反応性 2000年 東北大学大学院工学研究科 助手 ✓高温高圧水のどのような状態がバイオマスやプラスチックの分解反応に有用なのか 2006年 東北大学大学院工学研究科 助教授 2018年 東北大学大学院工学研究科 教授 2020年 現職 この間、2005年 文部科学省海外教育研究実践プログラム研究員としてドイツに 派遣 液相反応:水の状態図(水の三態) 講演内容 Pressure, MPa Liquid Solid 22.06 1. 液相反応 State State Critical 2. バイオマスの反応:炭素化の観点から Point 3. プラスチックの反応 (374 °C. Melting 22.06 MPa) 3.1 付加重合系 3.2 脱水縮合系 Frozen Vaporization 4. バイオマスとプラスチックを低分子化するには Triple Point 5.まとめ (0.01 °C, Condensation 0.0006 MPa) 0.0006 -Sublimation Vapor Advanced State Nanotechnology Deposition and Application of Supercritical 374 0.01 Fluids Temperature (°C) https://doi.org/10.1007/978-3-030-44984-1

液相反応: 水中での反応 (イオン反応) グリセリン サクリセリン H2-CH-CH2 OH OH OH 	<text><text><complex-block></complex-block></text></text>
液相反応:水中での反応(ラジカル反応) パリセリン H ₂ C-CH-CH2 OH OH OH H	液相反応:水中での反応(ラジカル反応) ^{グリセリン} H2C-CH-CH2 OH OH OH

液相反応:水の状態図 (P---T)

	` ^	~ `	~ /	\mathcal{P}		ריע_		•		- 1-	///	\sim				
Sample	Т	Time	Р	Ash	Yield (solid)	с	н	Ν	0	s	O/C	H/C	нну	HHV (cal.)	Ref.	
	°C		MPa	%	%	wt%	wt%	wt%	wt%	wt%			MJ/kg	MJ/kg		
Bark of the fruit of Magonia pubescens (MP)						43.04	5.46	0.54	50.9		0.88	1.55	14.81	16.2		
MP-HT1	170	5 h			46.25	64.1	4.6	0.7	30.4		0.35	0.87	23.95	24.6	[1]	
MP-HT2	180	5 h			~37.5	61.8	4.3	0.6	33.2		0.4	0.83	22.14	23.2		
MP-HT3	190	5 h			27.43	52.1	5	0.4	42.3		0.6	1.16	18.33	19.7		
Corn stover (CS1)				6.6		46.5	5.7	1.3	39.3		0.63	1.46	19	18.7		
CS1-HT	260	6h	~3.5	9.4	21.1	66.2	5.2	2.3	15.9		0.18	0.94	27	27.4		
Corn leaves (CL)				2.8		46.8	6.3	1.5	44.4		0.71	1.60	19	19.1		
CL-HT	260	6h	~3.5	1.6	28.7	72.2	5.3	2.5	15.8		0.16	0.87	30	29.7		
Scots pine bark (SPB)				2.4		53	5.9	0.3	41.7		0.59	1.33	21	21.1	[2]	
SPB-HT	260	6h	~3.5	1.3	49.9	70.1	4.9	0.3	21.8		0.23	0.83	28	28.0	[4]	
Wheat straw (WS)				8.6		45.6	5.8	0.3	42.9		0.71	1.52	18	18.1		
WS-HT	260	6h	~3.5	6.3	24.2	67.3	5	0.7	19		0.21	0.89	27	27.3		
Willow				1.9		49.3	6	0.4	45.3		0.69	1.45	19	19.6		
WL-HT	260	6h	~3.5	0.7	40.3	69.5	5	0.6	21.4		0.23	0.86	28	27.9		
Waste eucalyptus bark (EB)				3.6		45.22	6.38		48.4		0.8	1.69	18.5	18.2		[1] R. V. P. Antero, M. Domingos, L. L. Suzuk P. do Olivoiro, S. A. Oiolo, A. P. V. Monde
EB-HT1	220	2h	4.4	2.7	46.4	49.5	5.59		44.91		0.68	1.36	20.2	19.2		and S. S. Brum, Materia, 2019, 24, 19.
EB-HT2	240	2h		5.5	41.2	68.42	5.07		26.51		0.29	0.89	27	27.0		[2] H. Wikberg, S. Grongvist, P. Niemi,
EB-HT3	275	2h		5.7	42.2	69.73	5.04		25.23		0.27	0.87	27.3	27.6		Mikkelson, M. Siika-Aho, H. Kanerva, A. Ka
EB-HT4	300	2h	6	5.9	40	72.72	5.05		22.23		0.23	0.83	29.2	28.9	[3]	and T. Tamminen, Bioresource Technology, 2
EB-HT5	240	4h		5.6	41.5	69.22	5.07		25.71		0.28	0.88	28.2	27.4		235, 70-78.
EB-HT6	240	6h		6	40.9	68.92	5.07		26.01		0.28	0.88	28	27.2		[3] P. Gao, Y. Y. Zhou, F. Meng, Y. H. Zhang, J. Liu W. O. Zhang and G. Xue, Engrav. 2016.
EB-HT7	240	8h		10.9	40.1	69.58	4.93		25.49		0.27	0.85	27.1	27.2		238-245.
EB-HT8	240	10h		9.8	40.3	68.89	5.13		25.98		0.28	0.89	26.7	27.2		24

バイオマスの反応性:植物系

バイオマスの反応性:植物系

Sample	т	Time	Р	Ash	Yield (solid)	с	н	N	0	s	O/C	H/C	HHV	HHV (cal.)	Ref.	
	°C		MPa	%	%	wt%	wt%	wt%	wt%	wt%			MJ/kg	MJ/kg		
Bark mulch (BM)				7.7		59.8	6.3	1.2	32.6	0.1	0.41	1.26		24.8		
BM-HT1	200	3h		4.7		64.4	6.6	1.4	27.5	0.1	0.32	1.22		27.3	641	
BM-HT2	250	3h		6.2		70.8	6.1	0.1	21.3	0.6	0.23	1.03		29.6	[4]	
BM-HT3	250	20h		7.9		72.2	6	0.4	17.7	0.7	0.18	0.99		30.3		
Waste wood (WW)				8.53		38.36	6.34	3.56	43.22		0.85	1.97		16.2		
WW-HT1	210	30 min		7.43	73	45.02	6.33	1.5	39.72		0.66	1.68		18.9		
WW-HT2	210	1 h		7.12	65	46.14	6.25	1.82	38.67		0.63	1.61		19.3	[5]	
WW-HT3	250	30 min		8.14	55	51.08	5.99	2.78	32.02		0.47	1.40		21.4		
WW-HT4	250	1 h		9.49	50	55.36	5.71	3.72	25.72		0.35	1.23		23.1		
Eucalyptus sawdust (ES)				0.62							0.71	1.47	16.69			[4] X. Y. Cao, K. S. Ro, J. A. Libra, C. I.
ES-HT	250	2h		0.54	40						0.27	0.81	26.19		[6]	Kammann, I. Lima, N. Berge, L. Li, Y. Li, N.
Barley straw (BS)				4.3							0.66	1.45	17.34		[0]	Chen, J. Yang, B. L. Deng and J. D. Mao, J. Agric.
BS-1	250	2h		0.43	37						0.21	0.86	27.49			[5] V Lin Y Ma Y Peng and 7 Vu Bioresource
Corn stover-2 (CS2)				2.8							0.73	1.62	16.2		[7]	Technology, 2017, 243, 539-547.
CS2-HT	250	4h		2.1	0.36						0.18	0.94	27.76		[/]	[6] M. Sevilla, J. A. Maciá-Agulló and A. B.
Spruce (SP)				0.23							0.65	1.49	19.94			Fuertes, Biomass and Bioenergy, 2011, 35, 3152-
SP-HT1	175	30 min		0.11	88						0.62	1.44	20.4			3159.
SP-HT2	200	30 min		0.12	80						0.59	1.4	21			[7] A. B. Fuertes, M. C. Arbestain, M. Sevilla, J. A.
SP-HT3	225	30 min		0.14	70						0.49	1.24	22.5		rei	Macia-Aguilo, S. Fiol, R. Lopez, R. J. Smernik, W. P. Aitkenhead, F. Arce and F. Macias, Australian
Birch (BR)				0.28							0.68	1.56	20.42		وما	Journal of Soil Research, 2010, 48, 618-626.
BR-HT1	175	30 min		0.09							0.67	1.55	20.5			[8] QV. Bach, KQ. Tran, R. A. Khalil, Ø.
BR-HT2	200	30 min		0.09							0.62	1.45	20.6			Skreiberg and G. Seisenbaeva, Energy & Fuels,
BR-HT3	225	30 min		0.13							0.49	1.24	22.5			2013, 27, 6743-6753. 25

バイオ	$\overline{\prec}$	ス	\mathcal{O}	厉	Ī応	小	\pm	:	植	1	勿	系			
Sample	Т	Time	Р	Ash	Yield (solid)	с	Н	N	0	s	0/C	H/C	нну	HHV (cal.)	Ref.
	°C		MPa	%	%	wt%	wt%	wt%	wt%	wt%			MJ/kg	MJ/kg	
Maize silage (MS)				11.45							0.55	1.58	22.3		
MS-HT1	190	2h		11.65	71.8						0.39	1.37	25.4		
MS-HT2	190	6h		8.71	55.7						0.34	1.29	26.4		
MS-HT3	190	10h		10.41	65						0.33	1.33	27		
MS-HT4	230	2h		12.38	60.4						0.24	1.26	29.7		[9]
MS-HT5	230	6h		13.29	49.5						0.16	1.2	32.6		1-1
MS-HT6	230	10h		13.21	49.3						0.14	1.18	33.3		
MS-HT7	270	2h		13.1	41.3						0.12	1.13	33.8		
MS-HT8	270	6h		14.57	43.4						0.1	1.16	35.2		
MS-HT9	270	10h		14.26	40.2						0.09	1.13	35.7		
Coconut fiber (CF)				8.1							0.71	1.41	18.4		
CF-HT1	220	30 min		6.2	76.6						0.37	1.01	24.7		
CF-HT2	250	30 min		5	65.7						0.3	0.93	26.7		
CF-HT3	300	30 min		4.3	65						0.21	0.97	29.4		
CF-HT4	350	30 min		4.9	55.78						0.21	0.74	28.7		
CF-HT5	375	30 min		8.6	59						0.15	0.66	30.6		[10]
Eucalyptus leaves (EL)				10.5							0.72	1.59	18.9		[10]
EL-HT1	220	30 min		7.3	87.34						0.38	1.2	25.3		
EL-HT2	250	30 min		6.9	61.12						0.37	1.05	25		
EL-HT3	300	30 min		7.1	61.32						0.25	1.05	28.7		
EL-HT4	350	30 min		9.9	47.84						0.22	1.01	29.4		
EL-HT5	375	30 min		14.2	42.78						0.21	0.8	28.7		
Corn stalk (CS3)				4.64							0.65	1.58	17.51		
CS3-HT	250	4h		3.36	35.48						0.17	0.94	29.21		r111
Wood				1.31							0.68	1.65	17.93		[11]
Wood-HT	250	4h		0.41	38.1						0.22	0.9	28.38		

[9] J. Mumme, L. Eckervogt, J. Pielert, M. Diakité, F. Rupp and J. Kern, *Bioresource Technology*, 2011, 102, 9255-9260.
[10] Z. Liu, A. Quek, S. Kent Hoekman and R.

[10] L. L., Y. L. Quer, D. Henr Horn and M. B. (2013) 103, 943-949.
 [11] L.-P. Xiao, Z.-J. Shi, F. Xu and R.-C. Sun, *Bioresource Technology*, 2012, 118, 619-623.

植物系バイオマスの反応性

バイオマスの反応性:古紙系

Sample	т	Time	Р	Ash	Yield	с	н	N	0	s	O/C	H/C	нну	HHV	Ref
	**		MD-	0/	(sond)								Miles	(cal.)	
	·c		MPa	70	70	W170	W170	W170	W170	W170			MJ/Kg	MJ/Kg	
Waste paper (WP)				8.4		36.03	5.86	0.01	49.7		1.04	1.94		14.2	
WP-HT1	230	30 mir	n	13.2	84	35.01	5.32	0	46.47		1.00	1.81		13.4	
WP-HT2	250	30 mir	n	22.27	58	37.53	4.08	0.02	36.11		0.72	1.30		13.7	[5]
WP-HT3	250	1h		29.13	54	38.3	3.69	0.03	28.85		0.57	1.15		14.1	
WP-HT4	250	2h		31.23	45	39.32	3.02	0.02	26.41		0.50	0.92		13.9	
Office paper (OP1)				15.8		36.9	5.3		42		0.85	1.71	12.6	14.5	
OP1-HT	200	5h	1	14.2	83	36.4	5.1		44.3		0.91	1.67	13.6	13.8	
Office paper (OP2)															
OP2-HT	200	5h	1.4	13.6	76	38.2	3.6		44.7		0.88	1.12	12.9	12.7	
Newspaper (NP)				7		42.7	5.7		44.6		0.78	1.59	16.4	16.9	[12]
NP-HT	200	5h	1.4~1.6	5 3.4	70	50	5.6		41		0.62	1.33	19.3	19.7	[12]
Mixed paper (MP)				12.4		35.3	4.7		47.6		1.01	1.59	13.4	12.7	
MP-HT	200	5h	1.4~1.6	5 11	70	39.2	6.4		44.4		0.85	1.95	15	16.4	
Mixed paper recycled (MPR)															
MPR-HT	200	5h	1.4~1.6	5 11	73	39.6	5.1		45.3		0.86	1.53	14.8	14.9	

28

バイオ	$\overline{\langle}$	ス	σ)万	又加	い	生	:	Ê	Į		矛	1		
Sample	т	Time	Р	Ash	Yield (solid)	с	н	N	0	s	O/C	H/C	нну	HHV (cal.)	Ref.
	°C		MPa	%	%	wt%	wt%	wt%	wt%	wt%			MJ/kg	MJ/kg	
Grape pomace (GP)				4		54	6.1	1.9	35.5		0.49	1.35	22	22.3	
GP-HT	260	6h	~3.5	3.1	47.7	68	5.6	1.9	18.6		0.21	0.98	28	28.3	
Coffee cake (CC)				0.4		60	7.7	2.3	31.9		0.40	1.53	27	26.7	
CC-HT	260	6h	~3.5	0.3	54.7	73.4	7.2	3.1	15.6		0.16	1.17	32	32.4	[2]
Brewer's spent grain (SG)				4.1		50	6.6	3.9	39.1		0.59	1.57	21	21.0	[2]
SG-HT	260	6h	~3.5	3.7	34.5	69.3	6.7	3.8	15.4		0.17	1.15	30	30.4	
Greenhouse residues (GR)				26		39.1	4.7	1.4	30.8		0.59	1.43	15	15.4	
GR-HT	260	6h	~3.5	23.4	28.4	55.5	4.8	1.7	16.1		0.22	1.03	23	22.8	
Sugar beet pulp (SB)				6.2		51.1	6.7	3.4	38.7	0.2	0.57	1.56		21.6	
SB-HT1	200	3h		12.6		61.3	5.4	5.3	27.8	0.1	0.34	1.05		24.6	[4]
SB-HT2	250	3h		12.5		71.1	7.6	1.7	17.1	0.9	0.18	1.27		31.8	[4]
SB-HT3	250	20h		12		72.2	7.1	2.7	18	1.2	0.19	1.17		31.5	
Waste food (WF)				4.65		43.02	6.98	2.8	42.56		0.74	1.93		18.7	
WF-HT1	210	30 min		4.57	70	61.63	6.6	4.14	23.06		0.28	1.28		26.7	(6)
WF-HT2	210	90 min		4.21	60	61.51	6.41	3.99	23.9		0.29	1.24		26.4	[5]
WF-HT3	250	30 min		4.44	55	65.38	6.45	4.07	19.66		0.23	1.18		28.2	
Food waste (FW)				1.8		50.6	6.6	2.3	39		0.58	1.55	18.8	21.3	[12]
FW-HT	200	5h	1.8~2	1	61	71.6	8.5	2.8	15.8		0.17	1.41	29.6	33.3	[12]

H. Wikberg, S. Gronqvist, P. Niemi, A. Mikkelson, M. Siika-Aho, H. Kanerva, A. Mikkaper and T. Tamminen, Bioresource Technology, 2017, 235, 70-78.
 Y. Cao, K. S. Ro, J. A. Libra, C. I. Kammann, I. Lima, N. Berge, L. Li, Y. Li, N. Chen, J. Yang, B. L. Deng and J. D. Mao, J. Agric. Food Chem., 2013, 61, 9401-9411.
 Y. Lin, X. Ma, X. Peng and Z. Yu, Bioresource Technology, 2017, 245, 539-547.
 D. Gupta, S. M. Mahajani and A. Garg, Bioresource Technology, 2017, 245, 539-547.

食品系バイオマスの反応性

31

プラスチックの反応性

Sample	Т	Time	Р	Ash	Yield (solid)	с	Н	Ν	0	\mathbf{s}	Cl	O/C	H/C	нну	HHV (cal.)	Ref.	
	°C		MPa	%	%	wt%	wt%	wt%	wt%	wt%	wt%			MJ/kg	MJ/kg		
Polyethylene (PE)				0.05		84.22	11.32	0	3.85	0.61		0.03	1.60		42.4		
PE-HT (almost no change)	280	2h			~ 100											[1]	付加重合系プラスチック
Polypropylene (PP)				0.12		82.23	11.01	0	6.63	0.13		0.06	1.60		41.0	[1]	
PP-HT (almost no change)	280	2h			~ 100												
Polyvinyl chloride (PVC)						38.6	4.7	0.1			56.8	0.00	1.45		19.0		
PVC-HT1	180	15h			92	43.3	4.71		0		54	0.00	1.3		20.7		付加重会系プラスチック
PVC-HT2	190	15h			85	46.3	4.83		3.9		45	0.06	1.25		21.5		同加重日米ノノスノノノ
PVC-HT3	200	15h			64	59.1	4.93		5		31	0.06	1.01		25.9		
PVC-HT4	210	15h			52	65.5	4.43		13		19	0.15	0.82		26.7		
PVC-HT5	220	15h			45	72.4	4.51		12.1		6.5	0.13	0.75		29.3	[2]	
PVC-HT6	230	15h			39	75.8	5.09		15		4.1	0.15	0.8		30.9		
PVC-HT7	240	15h			35	80.7	5.25		12.5		1.6	0.12	0.75		33.1		
PVC-HT8	245	15h			33	84	5.14		10.1		0.78	0.09	0.73		34.3		
PVC-HT9	250	15h			33	85.2	5.3		9.1		0.5	0.08	0.74		35.0		
PVC-HT10	260	15h			32	84.5	5.02		10		0.43	0.09	0.71		34.4		 R. V. P. Antero, M. Domingos, L. L. Suzuki, S. B. de Oliveira, S. A. Oiala, A. P. V. Mendonca
A mixture of the four waste polymers in the sea (PE, PP, PET and Nylon) (MPS)		付	加重	合 <u></u> 5.84	€+脱	水統 77.4	12.6	2.99	1.22			0.01	1.94	35.6	41.6		and S. S. Brum, <i>Materia</i> , 2019, 24, 19. [2] J. Poerschmann, B. Weiner, S. Woszidlo, R. Koehler and F. D. Koninke, <i>Chemosphere</i> , 2015.
MPS-HT1	200	3h		6.95	66.7	79	11.9	0.6	1.45			0.01	1.80	38.3	41.3	[3]	119, 682-689.
MPS-HT2	250	3h		6.2	40.1	80.1	12.6		1.14			0.01	1.87	38.9	42.6		[3] M. E. Iniguez, J. A. Conesa and A. Fullana,
MPS-HT3	300	3h		5.27	37.4	80.9	13		0.77			0.01	1.92	39.1	43.4		Fuel, 2019, 257, 7.

プラスチックの反応性

Sample	Т	Time	Р	Ash	Yield (solid)	с	н	N	0	s	CI	0/C	H/C	нну	HHV (cal.)	Ref.	
	°C		MPa	%	%	wt%	wt%	wt%	wt%	wt%	wt%			MJ/kg	MJ/kg		
Polycarbonate (PC)						74.25	8.56	0.02	17.17			0.17	1.37		34.2		
PC-HT1	250	1h			18	79.41	7.94	0.08	12.57			0.12	1.19		35.8		
PC-HT2	300	1h			9	79.14	7.74	0.2	12.92			0.12	1.17		35.4		脱水縮合系プラスチック
PC-HT3	350	1h			8	82.12	7.18	0.12	10.58			0.10	1.04		36.0		
High impact polystyrene (HIPS)						87.39	7.63						1.04		39.5		
HIPS-HT1	250	1h			96	87.78	7.45						1.01		39.4		
HIPS-HT2	300	1h			66	87.42	6.37						0.87		38.0		付加重合系プラスチック
HIPS-HT3	350	1h			11	80.45	5.89						0.87		35.0		
Acrylonitrile butadiene styrene (ABS)						80.35	7.29	5.2		0.21			1.08		36.6		
ABS-HT1	250	1h			94	82.5	7.49	5.15		0.26			1.08		37.6	[4]	はれぞくてポニュイ、な
ABS-HT2	300	1h			61	79.08	6.34	0.4					0.96		35.1		何加里合糸ノフスナック
ABS-HT3	350	1h			2												
Polypropylene (PP)						83.95	13.82						1.96		45.6		
PP-HT1	250	1h			91	83.82	13.8						1.96		45.5		
PP-HT2	300	1h			88	84.67	13.83						1.95		45.9		付加重合系プラスチック
PP-HT3	350	1h			64	84.17	13.22						1.87		45.0		
Polyamide 6 (PA6)						41.67	6.47	7.97					1.85		22.1		時上始へずポニュイ、ち
PA6-HT1	250	1h			27	2.08	0.26	0.22					1.49		1.0		脱水稲合糸ノフスナック
PA6-HT2	300	1h			21	1.51	0.16	0.06					1.26		0.7		[4] X. Y. Zhao, L. Zhan, B. Xie and B. Gao, Chamara hum 2018, 207, 742, 7528 J
PA6-HT3	350	1h			20	1.23	0.17	0.07					1.65		0.6		Cnemosphere, 2018, 207, 742-75234

プラスチックの反応性

35

プラスチックの反応性

36

まとめ

1. 液相反応

水を活用してバイオマスやプラスチックは改質・低分子化することができる
2. バイオマスの反応:炭素化の観点から
3. プラスチックの反応
プラスチックの反応性1:付加重合系 (付加重合系プラスチックの反応生はラジカルの発生のしやすさに依存) プラスチックの反応性2:脱水縮合系 (イオン反応のため低温でも進行)
4. バイオマスとプラスチックを低分子化するには イオン反応が鍵 液相か気相か理解しながら反応を解析する必要性