

8

1 t/d 超臨界水ガス化パイロットプラント

鶏糞の平均組成

Biomass Project Research Center, Hiroshima Univ.

	単位	平均値	標準偏差	cv值
С	kg/kg-dry	0.328	0.024	7.3
Н	kg/kg-dry	0.043	0.003	8.1
Ν	kg/kg-dry	0.039	0.012	30.0
S	kg/kg-dry	0.004	0.001	21.6
Р	kg/kg-dry	0.021	0.004	17.1
CI	kg/kg-dry	0.004	0.001	20.0
К	kg/kg-dry	0.036	0.008	21.3
Ca	kg/kg-dry	0.113	0.015	13.0
水分	kg/kg-dry	0.640	0.153	24.0
灰分	kg/kg-dry	0.286	0.040	13.9
HHV	MJ/kg-dry	12.6	1.17	9.2

9

10

Biomass Project Research Center, Hiroshima Univ.

ガス化効率・炭素収支

鶏糞16.0 wt%以下(活性炭 5 wt%)の条件では、鶏糞の完全ガス化を確認できた。

Biomass Project Research Center, Hiroshima Univ.

ガス組成

11

反応熱

無機物質の挙動

Reaction temperature [°C]

Reaction temperature [°C]

伝熱計算

パイロットプラントの熱収支と効率推算

予測したプロセス効率は-172.6%に対し、実験でのプロセス効率は-172.5% であることから、予測と実験でのプロセス効率がほぼ一致することを確認できた。

パイロットプラントの熱収支と効率推算

熱効率向上のエ夫

供給原料の熱量で整理すると以下のようになり、供給する原料の熱量が 高いものほど、プロセス効率がよくなる結果となった. この結果から、超臨 界水ガス化では、プロセスに供給する原料の熱量をより高く、より高濃度と すれば、プロセス効率向上に有効であることが確認された.

結論

- ・総括反応は1次反応速度式で表せる
- ・数分で完全ガス化が可能
- ガス組成は熱力学で予想できる
- 反応熱も熱力学で予想できる
- 無機物の挙動も熱力学で予想できる

超臨界水中の現象も、従来の熱力学・反応工学を適切に 利用すれば表せる。決して魔法の水ではない。限界も知 りながら、適切な利用を!!

Biomass Project Research Center, Hiroshima Univ.