

物理化学的視点から地下深部への超臨界 CO2圧入を考える

二酸化炭素地中貯留技術研究組合・技術部長

(公財)地球環境産業技術研究機構 (RITE) CO2貯留研究グループリーダー

せつ じきゅう 薛 自求 Ziqiu Xue (xue@rite.or.jp)

1. 超臨界CO₂-CO₂地中貯留

Supercritical CO₂, Saline Aquifer CO₂ Storage

·常温大気圧下(25℃, 0.1 MPa)では、

CO₂ (<mark>気体</mark>)密度が <u>1.8 kg/m³</u>、

・帯水層条件下(12.5 MPa, 47℃)では、
 CO2 (超臨界)密度が 656 kg/m³となるが、
 地層水よりは小さい。

どのような地層にCO2圧入するか・塩水性帯水層

Table 1Comparisons of pH and concentrations of chemical components in formation water,
sea water and ground water (Mito, 2005).

	Formation Water	Sea Water	Ground Water	Unit
pH	7.9	8.1	7.1	-
Na	1,936	10,784	426	mg/L
К	385	399	11	mg/L
Ca	421	412	85	mg/L
${ m Mg}$	16	1,284	31	mg/L
\mathbf{HCO}_3	374	108	138	mg/L
${ m SO}_4$	77	2,712	115	mg/L
Cl	3,852	19,352	615	mg/L

地層水塩分濃度 vs 超臨界CO2気泡サイズ

2. 地球物理的視点: 地下に圧入されたCO2挙動モニタリング

P-wave forms obtained from pre- and post- CO₂ flooding in a porous sandstone

Experimental setup for P-wave velocity tomography

D=5, L=10cm

Array: 8 x 8

#3 for CO₂ injection pressure

#2 for pore water pore pressure

> Syringe pump #1 for oil hydrostatic pressure

NISSE

Velocity reductions resulting from injection of CO₂ in different phases

Changes in velocity and attenuation during injection of CO₂ in Tako sandstone

Lei and Xue: Physics of the Earth and Planetary Interiors 176, 224-234,2009

Experimental Study of Seismic Wave Tomography

inusione: 2570, Smu

CO₂ migration in water-saturated sandstone

CO₂ flows parallel to bedding plane; Numeric numbers: Elapsed time

Overview of the Nagaoka Site

Sonic Log (Vp) from the Nagaoka pilot site

Nagaoka CO2 / Seismic Tomography

Nagaoka CO2 / Seismic Tomography SIRT Result(July. 2004)

(July. 2004 : MS2)

3.30 3.20 3.10 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55

Velocity

(km/s)

(Feb. 2003 :BLS)

3.30 3.20 3.10 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.65 2.65 2.55

Max: - 3. 5%

-- Insights from our lab experiment – mobile phase (supercritical CO₂) trapped by seal

17

Visualization of the CO₂ plume and pressure fronts

How optic fiber will response to CO2 penetration from "reservoir" to "caprock"?

CO₂ accumulation in reservoir (coarse grain)

('2496', '164', '1', '165503.600', 'SCO2 = ', 0.1929406918976232)

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

CO₂ saturation profile vs strain profile along the sample length

CO₂ saturation profile vs strain profile along the sample length

Fault Integrity Monitoring (reactivation, leakage) with Fiber Optic Sensing

Distributed Strain, Temperature and Acoustic sensing

Installing fiber optic cables behind casing of monitoring wells for

a fault identified

in 3D seismic image

3. 地球化学的視点: 地下に圧入されたCO2挙動モニタリング

Resistivity Changes with Time @ OB-2

CHDT*(Cased Hole Dynamic Tester)

OB-2 @ 1114m: Mostly free CO₂

OB-2 @ 1108.6m & 1118m: Mostly Formation Water

OB-2 @ 1108.6m&1118m: Cations in the formation water

Increased: HCO₃⁻, Ca, Mg and Fe @1118m

Formation Fluid Sampling at OB-2

Successful measurement of dis-CO₂ & pH under high pressure condition

Partial pressure at the reservoir depth

Saturation Index (SI) of Calcite (CaCO₃)

 $\rightarrow \rightarrow \rightarrow$ Mineral trapping of CO₂?

CO₂ Trap Mechanisms Confirmed @Nagaoka Site

Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions

Published 10 June 2016, *Science* **352**, 1312 (2016) DOI: 10.1126/science.aad8132

カーボンニュートラルとCCSの社会実装

2050年に向けて、徐々に拡大するケース

50年にカーボンニュートラル(実質排出ゼロ)を実現するために、今から毎年、同じ 削減量で減らしていくと計算すると、30年時点では45.9%の削減が必要になる。この計 算で割り出された数字を意識して、新目標が決まったとみられる。

CO2 Storage potential in Japan

SRM: CO2 Storage Resources Management(経済性評価込み)

貯留可能量、<mark>排出源</mark>(排出量、距離)、輸送手段、<mark>貯留規模、経済性</mark>、社会的受容性(<mark>SLO</mark>)、複数の実想定サイトを選定!

36

Gretchen Watkins Pre

GRETCHEN WATKINS

President, Shell USA, Inc

Carbon capture and storage is not a single technology, but rather a series of technologies and scientific breakthroughs that work in concert to achieve a performed outcome, one that will play a significant role in the future of energy and our planet.

謝辞

この成果は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託業務の結果得られたものです。

This talk is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO) and the Ministry of Economy, Trade and Industry (METI) of Japan.