超臨界流体部会 第 21 回 サマースクール 「エネルギー・環境問題に挑戦する超臨界流体・CO2分離貯留技術」

CO2分離回収技術の材料とプロセスからの省エネ化検討

名古屋大学 町田洋

経歴

東北大学(2000-2009)

超臨界CO₂/イオン液体/溶質の平衡物性

医薬品の分離

RITE (2009-2010)

高圧用CO₂吸収剤の開発

CCS (Carbon dioxide Capture and storage

名古屋大学(2010-)

相分離型CO₂吸収剤の開発

CCU(Carbon dioxide Capture and Utilization)

Google

イオン液体+高圧 CO_2

イオン液体

Tm<室温 (25°C)

- かさ高い構造
- 電荷が分散
- 蒸気圧が小さい

- CO₂はイオン液体へ多く溶解する
- イオン液体はCO₂相へほとんど溶解しない

排ガスからの低エネルギーCO₂分離

- 1) L. A. Blanchard, J. F. Brennecke, *Ind. Eng. Chem. Res.*, **40**, 287, (2001)
- 2) Shiflett, M. B. et al.: *Energy Fuels*, **24**, 5781-5789(2010).

高圧吸収、高圧再生の吸収液探索

IGCC燃焼前回収

Eagleパイロットプラント (J-Power、若松)

出典:電源開発株式会社ホームページ ※Eagle:多目的石炭ガス製造技術

IGCC燃焼前回収を対象、高圧(~1MPa) 3級アミン

省エネルギー化を達成する材料+プロセス 対象:燃焼排ガス(低圧)

相分離型吸収剤

水素ストリッピング再生

冷熱を利用したCO₂回収技術

冷熱を利用するDAC "Cryo-DAC"

■ LNG冷熱を利用したクライオジェニックポンピングが駆動する圧力 スイング型アミンプロセス

経験した吸収液開発領域

発表内容

1、CO₂の分離回収 CO₂回収技術の紹介 相分離型吸収剤

2、CCUを想定したプロセス H₂ストリッピング再生

研究背景 CCS, CCUに関して

- <u>Carbon dioxide Capture and Storage or Utilization process</u>
- 温室効果ガスCO₂の排出抑制,循環利用技術

CO₂ 分離コストが 全CCSプロセスの約60%を占める

世界のCCSプロジェクト

苫小牧CCSプロジェクト APCChE2019

データベース

ABOUT US CONTACT US

◆ LOGIN

Home / Facilities

Policies ▼ Storage ▼

Legal & Regulatory

Facilities ▼

Networks Emissions

CCS Requirement

CCS Readiness

Facility Name	Facility Category	Facility Status	Country	Operational	Facility Industry	Facility Short Description
Aberdeen Biorefinery Carbon Capture and Storage	Commercial CCS Facility	Advanced Development	USA	2024	Ethanol Production	Summit Carbon Solutions and Glacial Lakes Energy have partnered to develop infrastructure to capture, transport store up to 143,000 tonnes CO2 per annum from the Glacial Lakes Energy Aberdeen biorefinery plant.
Aberthaw Pilot Carbon Capture Facility	Pilot and Demonstration CCS Facility	Completed	United Kingdom	2013	Power Generation	A pilot-scale plant at the Aberthaw power station in South Wales UK tested the Cansolv integrated CO2 and SO2 removal system during 2013/2014.

CO2分離技術

CO₂の濃度

分離の観点では高濃度ほど有利

理想的なCO。分離回収仕事

$$W_{min} = RT \left[n_{\rm B}^{CO_2} \ln(y_B^{CO_2}) + n_{\rm B}^{B-CO_2} \ln(y_B^{B-CO_2}) \right]$$

$$+RT \left[n_C^{CO_2} \ln(y_C^{CO_2}) + n_C^{C-CO_2} \ln(y_C^{C-CO_2}) \right]$$

$$-RT \left[n_A^{CO_2} \ln(y_A^{CO_2}) + n_A^{A-CO_2} \ln(y_A^{A-CO_2}) \right]$$

処理するガスのCO2濃度、CO2回収率、回収CO2純度

CO2の濃度と分離回収仕事

*回収CO2純度98%

CO2回収の解釈

• カーボンニュートラル

• ネガティブエミッション

• GHG排出削減

NEDO: CO2を原料とした製品のライフサイクルにおけるCO2削減量の評価法に関する調査 2021.3 Zimmermann, Arno; Müller, Leonard; Wang, Yuan, et. al. "Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO₂ Utilization (Version 1.1)", 2020-09-30

カーボンニュートラル

<u>CO2 吸収</u>

CO2 隔離

- バイオ由来、またはDAC により吸収されたのと同量のCO2 が使用後処理において排出
- ライフサイクルのその他の段階におけるGHG 排出量がゼロ
- 化石由来のCO2 が製品の状態のまま永久に 隔離・貯留
- ライフサイクルのその他の段階におけるGHG 排出量がゼロ

ネガティブエミッション

- バイオ由来、またはDAC により吸収されたCO2 が製品の状態のまま永久に隔離・貯留
- ライフサイクルのその他の段階におけるGHG 排出量が隔離・貯留されたCO2 よりも少ない

DACCS: DACとCCSをあわせた名称

BECCS: Bioenergy with Carbon

Capture and Storage

GHG排出削減

• ライフサイクルにおけるGHG排出量が従来製品と比べて少ない

CO₂回収トレンド

研究報告

Carbon Engineering's air capture design

従来のアミン吸収法

アミン吸収法・・・塩基性のアミンに酸性ガスの CO_2 を接触させるとアミンが CO_2 を吸収し、温度を上げることで逆反応が起こり CO_2 を放散する。

アミンによるCO₂吸収反応式

 $2RR'NH + CO_2 \stackrel{常温}{\rightleftharpoons} RR'NCOO^- + RR'NH_2^+$ 高温

CO₂分離・回収エネルギー

①蒸気損失熱 + ②反応熱 + ③液昇温熱

- ①水蒸気損失熱:放散塔塔頂における水蒸気の蒸発 潜熱を補うために必要な熱
- ②反応熱:CO₂解離熱(吸熱)
- ③液昇温熱:熱交換器の温度差(△T=10°C)の顕熱

相分離液開発概要

- ・ 省エネルギー材料開発
- ・ 省エネルギープロセス開発

相分離型省エネルギーCO₂吸収剤の開発

Material Design

CO₂吸収時に相分離する 吸収剤の設計

Process Design

相分離吸収剤の物性を 活用できるプロセスの開発

相分離型CO₂吸収剤の探索試験

Table 相分離試験結果

Amine 30 wt%, DEGDEE* 60 wt% and water 10 wt%

従来: water 70 wt%

疎	기	<	性
ル ハ	/ 1	•	1—

Amine	Before absorption	After absorption
2-(Butylamino) ethanol	1 phase	1 phase
2-(Ethylamino) ethanol	1 phase	2 phase
Monoethanol amine	2 phase	2 phase

 40° C P_{CO2}=1 atm

* Diethylene Glycol Diethyl Ether

相タイプ

CO₂吸収前

CO2吸収後

均一相タイプ

- ・CO₂吸収前後で均一相
- ・アミンと疎水性溶媒の親和性が強すぎる

hydrophobic solvent + water

R-NH₃⁺ HCO₃⁻

相分離タイプ

•CO₂吸収により相分離を起こす

hydrophobic solvent

R-NH₃⁺ HCO₃⁻

不均一タイプ

- ・CO₂吸収前から2液相
- ・アミンと疎水性溶媒の親和性が弱すぎる

疎水性評価 Kow

Amine	Kow	Sol.A
PMEAT	2634	Miscible
BAE	47	Miscible
AMB	20	Miscible
EAE	5.4	0
DAP	1.95	Immiscible
AP	1.93	Immiscible
MAE	1	Immiscible
AEE	0.68	Immiscible
MEA	0.56	Immiscible

Calculate with UNIFAC –LLE model with PRO/II

T. Magnussen et al., Ind. Eng. Chem. Process Des. Dev., 1981, 20 (2), pp 331–339 UNIFAC parameter table for prediction of liquid-liquid equilibriums

アミンと有機溶媒の組み合わせと相挙動

		エーテル				
		DEGDEE (97)	DEGMEE (12.3)	DEGDME (1.54)		
	BAE (47)	1	1	1		
	AMB (20)	1	1	1		
ア	EAE (5.4)	0	0	0		
=	DAP (1.9)	2	0	0		
レ	MAE (1)	2	0	0		
	AEE (0.68)	2	2	0		
	MEA (0.56)	2	2	2		

1:均一系、2:不均一系、〇:相分離系

()内:K_{ow}値

CO2吹き込み条件 40℃、P_{CO2} = 1 atm

CO2溶解度測定

飽和吸収後、液の組成を TOC、GCで分析 40-90℃、p_{CO2}=0.01-1 atm

Table 測定対象 Amine 30 wt%, DEGDEE 60 wt% and water 10 wt%

Amine	Before absorption	After absorption
2-(Butylamino) ethanol	1 phase	1 phase
2-(Ethylamino) ethanol	1 phase	2 phase
Monoethanol amine	2 phase	2 phase

CO₂溶解度 (不均一系)

通常のアミン水溶液と似ている

CO2溶解度(相分離系)

Treated CO_2 相分離系(EAE+DEGDEE+水) rich CO₂ lean amine 10 Absorber 90°C, 1 atm 再生塔条件 **Process** gas Rich P_C02 [atm] Lean 0.1 amine 40°C, 0.1 atm (吸収塔条件) 0.01 吸収条件 再生条件 0.001 0.5 0.1 0.2 0.3 0.4 0.6 0

mol-CO2/mol-amine

CO₂溶解度差比較

CO₂溶解度差= 吸収条件(40℃、pCO₂=0.1 atm) — 再生条件(90℃、pCO₂=1 atm)

		CO ₂ 溶解度差	
		mol-CO ₂ /	mol-CO ₂ /
		mol-amine	kg-solvent
不均一型	MEA+DEGDEE+water	0.059	0.292
相分離型	EAE+DEGDEE+water	0.315	1.060
均一型	BAE+DEGDEE+water	0.240	0.614

相分離型

 $\Delta T = 40^{\circ}C$

吸収工程(50°C)

CO₂を吸収した相が分離する

再生工程(90°C)

再生アミンがエーテル相に抽出 重液相中にエーテルが溶解

エーテル相が再生をアシスト

DEGDEE:

Diethylene Glycol Diethyl Ether

相分離点 温度と圧力の関係

アミン、エーテル種の影響

組み合わせ	吸収塔温度[℃]	再生塔温度[℃]
EAE+DEGDME	30	70
EAE+DEGDEE	50	90
MAE+DEGDEE	70	110

相分離液を用いたラボプラント試験

再生塔 再生液 吸収液 貯め 貯め

加湿器 吸収塔

吸収塔試験結果(40℃、CO₂in=0.2 atm)

CO₂回収率90%に必要な液量は、相分離液で40%削減 (従来MEAとの比較)

吸収塔大きさ (1 ton-CO₂/day、90%回収のケース)

		相分離液	MEA
吸収液量	kg/hr	718	974
装置容積	m^3	1.29	1.44

26%減 10%減

CCUを想定したプロセス

<u>Carbon dioxide</u> <u>Capture and</u> <u>Utilization process</u>

再生に関する提案(CCUプロセス)

再生に関する提案 H₂ストリッピング

H₂ストリッピング再生 再生塔内部

した液

した液

理論的分離エネルギー

*CO2回収率90%

相分離液の有効性

ラボプラント実験 相分離液+ガスストリッピング

連続運転における各値の経時変化

- ΔT = 10℃で安定して50minの連続運転
- ・ CO₂の回収率は約90%
- ・ 再生塔塔頂CO,濃度はメタネーションに適した20%

ストリッピング再生でのポイント

1. 溶解度曲線 圧力と溶解度の変化量

2. 吸収速度
 吸収塔塔底での濃度

3. 低含水溶剤 乾燥H₂ガスに水蒸気が移動→蒸気損失熱

相分離液の最適化

分子設計

物性評価

プロセス評価

疎水性 溶媒

- 分子ペア設計指針
- 溶解度パラメータ
- 量子化学計算(今後)
- CO₂溶解度
- 密度•粘度
- 反応熱

- ラボプラント試験
- ・ 分離エネルギー試算
- プロセスシミュレータ

まとめ

・ 相分離液 → 従来より低温度差で分離可

CCS: 相分離+ヒートポンプ1.5 GJ/ton-CO₂

CCU:相分離 + H₂ストリッピング 1 GJ/ton-CO₂
 (分子構造、プロセス最適化で低減の余地あり)

低温再生: 排熱利用促進、吸収液の劣化低減効果 *1次エネルギー換算値

