超臨界流体部会 第 21 回 サマースクール 「エネルギー・環境問題に挑戦する超臨界流体・CO2分離貯留技術」

# CO2分離回収技術の材料と プロセスからの省エネ化検討

名古屋大学 町田洋







イオン液体+高圧 $CO_2$ 

- かさ高い構造
- 電荷が分散
- 蒸気圧が小さい



- CO<sub>2</sub>はイオン液体へ多く溶解する
- イオン液体はCO<sub>2</sub>相へほとんど溶解しない

排ガスからの低エネルギーCO<sub>2</sub>分離

1) L. A. Blanchard, J. F. Brennecke, *Ind. Eng. Chem. Res.*, **40**, 287, (2001)

2) Shiflett, M. B. et al.: *Energy Fuels*, **24**, 5781-5789(2010).



IGCC燃焼前回収

### 高圧吸収、高圧再生の吸収液探索



Eagleパイロットプラント (J-Power、若松) 出典:電源開発株式会社ホームページ ※Eagle:多目的石炭ガス製造技術



IGCC燃焼前回収を対象、高圧(~1MPa) 3級アミン



### 省エネルギー化を達成する材料+プロセス 対象:燃焼排ガス(低圧)

#### 相分離型吸収剤

### 水素ストリッピング再生



5





#### 冷熱を利用したCO<sub>2</sub>回収技術







LNG冷熱を利用したクライオジェニックポンピングが駆動する圧力 スイング型アミンプロセス







発表内容

1、CO<sub>2</sub>の分離回収
 CO<sub>2</sub>回収技術の紹介
 相分離型吸収剤

2、CCUを想定したプロセス H<sub>2</sub>ストリッピング再生

## 研究背景 CCS, CCUに関して

- <u>Carbon dioxide</u> <u>Capture and</u> <u>Storage or</u> <u>U</u>tilization process
- ・温室効果ガスCO<sub>2</sub>の排出抑制,循環利用技術



#### CO<sub>2</sub> 分離コストが 全CCSプロセスの約60%を占める

## 世界のCCSプロジェクト



苫小牧CCSプロジェクト APCChE2019



Japan CCS Co., Ltd







| Facility Name                                      | Facility Category                          | Facility Status         | Country        | Operational | Facility Industry  | Facility Short Description                                                                                                                                                                                               |
|----------------------------------------------------|--------------------------------------------|-------------------------|----------------|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aberdeen Biorefinery Carbon<br>Capture and Storage | Commercial CCS<br>Facility                 | Advanced<br>Development | USA            | 2024        | Ethanol Production | Summit Carbon Solutions and Glacial Lakes Energy have partnered to develop<br>infrastructure to capture, transport store up to 143,000 tonnes CO2 per annum<br>from the Glacial Lakes Energy Aberdeen biorefinery plant. |
| Aberthaw Pilot Carbon<br>Capture Facility          | Pilot and<br>Demonstration CCS<br>Facility | Completed               | United Kingdom | 2013        | Power Generation   | A pilot-scale plant at the Aberthaw power station in South Wales UK tested the Cansolv integrated CO2 and SO2 removal system during 2013/2014.                                                                           |

# CO<sub>2</sub>分離技術







#### 分離の観点では高濃度ほど有利

### 理想的なCO<sub>2</sub>分離回収仕事



$$W_{min} = RT \left[ n_{\rm B}^{CO_2} \ln(y_{B}^{CO_2}) + n_{\rm B}^{B-CO_2} \ln(y_{B}^{B-CO_2}) \right] + RT \left[ n_{C}^{CO_2} \ln(y_{C}^{CO_2}) + n_{C}^{C-CO_2} \ln(y_{C}^{C-CO_2}) \right] - RT \left[ n_{A}^{CO_2} \ln(y_{A}^{CO_2}) + n_{A}^{A-CO_2} \ln(y_{A}^{A-CO_2}) \right]$$

処理するガスのCO2濃度、CO2回収率、回収CO2純度

### CO2の濃度と分離回収仕事



\*回収CO2純度98%

### CO<sub>2</sub>回収の解釈

カーボンニュートラル

• ネガティブエミッション

• GHG排出削減

NEDO: CO2を原料とした製品のライフサイクルにおけるCO2削減量の評価法に関する調査 2021.3 Zimmermann, Arno; Müller, Leonard; Wang, Yuan, et. al. "Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO<sub>2</sub>Utilization (Version 1.1)", 2020-09-30

カーボンニュートラル **CO2** 隔離 <u>CO2 吸収</u> CO2 CO2 CO2 貯留など 化石燃料など CO<sub>2</sub>

- バイオ由来、またはDAC により吸収されたのと 同量のCO2 が使用後処理において排出
- ライフサイクルのその他の段階におけるGHG 排出量がゼロ
- 化石由来のCO2 が製品の状態のまま永久に
   隔離・貯留
- ライフサイクルのその他の段階におけるGHG 排出量がゼロ

ネガティブエミッション



- バイオ由来、またはDAC により吸収されたCO2 が製品の状態のまま永久に隔離・貯留
- ライフサイクルのその他の段階におけるGHG 排出量が隔離・貯留されたCO2よりも少ない

DACCS: DACとCCSをあわせた名称

BECCS: Bioenergy with Carbon Capture and Storage

### GHG排出削減



• ライフサイクルにおけるGHG排出量が従来製品と比べて少ない

CO<sub>2</sub>回収トレンド

#### 研究報告





Carbon Engineering's air capture design

Web of Science調べ

従来のアミン吸収法

アミン吸収法・・・塩基性のアミンに酸性ガスのCO<sub>2</sub>を接触させるとアミンが CO<sub>2</sub>を吸収し、温度を上げることで逆反応が起こりCO<sub>2</sub>を放散する。



## 相分離液開発概要

- 省エネルギー材料開発
- 省エネルギープロセス開発





### 相分離型省エネルギーCO<sub>2</sub>吸収剤の開発



## 相分離型CO<sub>2</sub>吸収剤の探索試験



相タイプ



### 疎水性評価 Kow

| Amine | Kow  | Sol.A      |
|-------|------|------------|
| PMEAT | 2634 | Miscible   |
| BAE   | 47   | Miscible   |
| AMB   | 20   | Miscible   |
| EAE   | 5.4  | 0          |
| DAP   | 1.95 | Immiscible |
| AP    | 1.93 | Immiscible |
| MAE   | 1    | Immiscible |
| AEE   | 0.68 | Immiscible |
| MEA   | 0.56 | Immiscible |



Calculate with UNIFAC –LLE model with PRO/II

T. Magnussen et al., Ind. Eng. Chem. Process Des. Dev., 1981, 20 (2), pp 331–339 UNIFAC parameter table for prediction of liquid-liquid equilibriums

### アミンと有機溶媒の組み合わせと相挙動

|   |            | エーテル        |               |               |  |  |
|---|------------|-------------|---------------|---------------|--|--|
|   |            | DEGDEE (97) | DEGMEE (12.3) | DEGDME (1.54) |  |  |
|   | BAE (47)   | 1           | 1             | 1             |  |  |
|   | AMB (20)   | 1           | 1             | 1             |  |  |
| ア | EAE (5.4)  | 0           | 0             | 0             |  |  |
| Ξ | DAP (1.9)  | 2           | 0             | 0             |  |  |
| ン | MAE (1)    | 2           | 0             | 0             |  |  |
|   | AEE (0.68) | 2           | 2             | 0             |  |  |
|   | MEA (0.56) | 2           | 2             | 2             |  |  |

1:均一系、2:不均一系、O:相分離系 ()内:K<sub>ow</sub>値 CO2吹き込み条件 40℃、P<sub>co2</sub>=1atm

### CO<sub>2</sub>溶解度測定



飽和吸収後、液の組成を TOC、GCで分析 40-90℃、p<sub>co2</sub>=0.01-1 atm

Table 測定対象 Amine 30 wt%, DEGDEE 60 wt% and water 10 wt%

| Amine                     | Before<br>absorption | After<br>absorption |
|---------------------------|----------------------|---------------------|
| 2-(Butylamino)<br>ethanol | 1 phase              | 1 phase             |
| 2-(Ethylamino)<br>ethanol | 1 phase              | 2 phase             |
| Monoethanol<br>amine      | 2 phase              | 2 phase             |

CO<sub>2</sub>溶解度(不均一系)



通常のアミン水溶液と似ている





CO<sub>2</sub>溶解度差比較

CO<sub>2</sub>溶解度差= 吸収条件(40°C、pCO<sub>2</sub>=0.1 atm) - 再生条件(90°C、pCO<sub>2</sub>=1 atm)



相分離型



## 相分離点温度と圧力の関係



アミン、エーテル種の影響



| 組み合わせ      | 吸収塔温度[℃] | 再生塔温度[℃] |
|------------|----------|----------|
| EAE+DEGDME | 30       | 70       |
| EAE+DEGDEE | 50       | 90       |
| MAE+DEGDEE | 70       | 110      |

### 相分離液を用いたラボプラント試験





再生塔 再生液 吸収液 吸収塔 野め 貯め 吸収塔

吸収塔試験結果(40°C、CO<sub>2</sub>in=0.2 atm)



CO<sub>2</sub>回収率90%に必要な液量は,相分離液で40%削減 (従来MEAとの比較)

### 吸収塔大きさ (1 ton-CO<sub>2</sub>/day、90%回収のケース)

|      |                | 相分離液 | MEA  |      |
|------|----------------|------|------|------|
| 吸収液量 | kg/hr          | 718  | 974  | 26%減 |
| 装置容積 | m <sup>3</sup> | 1.29 | 1.44 | 10%減 |

# CCUを想定したプロセス

#### <u>Carbon dioxide</u> <u>Capture and</u> <u>U</u>tilization process

Figure 1. Paving the way — A selection of today's carbon capture and utilization pathways



#### Source: <u>The Pembina Institute with Integrated CO2 Network (ICO2N)</u>

### 再生に関する提案(CCUプロセス)





H, ストリッピング再生 再生塔内部



• :CO<sub>2</sub> • :H<sub>2</sub>

> <u>ストリッピング効果</u> CO<sub>2</sub>分圧低下 ・ CO<sub>2</sub>溶解度低下 再生率向上 (再生塔温度低下)

> > Important: H<sub>2</sub> は液に溶けない 41

理論的分離エネルギー



\*CO2回収率90%

### 相分離液の有効性







#### 連続運転における各値の経時変化



- ΔT = 10℃で安定して50minの連続運転
- ・ CO<sub>2</sub>の回収率は約90%
- ・ 再生塔塔頂CO2濃度はメタネーションに適した20%

# ストリッピング再生でのポイント

- 溶解度曲線
   圧力と溶解度の変化量
- 2. 吸収速度
   吸収塔塔底での濃度



CO₂溶解度

3. 低含水溶剤
 乾燥H₂ガスに水蒸気が移動→蒸気損失熱

### 相分離液の最適化







| Amine | Kow  | Sol.A      | Sol.B  | Sol.C      | Sol.D  |
|-------|------|------------|--------|------------|--------|
| PMEAT | 2634 | 1phase     | 1phase | 1phase     | 1phase |
| BAE   | 47   | 1phase     | 1phase | 1phaco     | 1phase |
| AMB   | 20   | 1phase     | 1phase | IVIISCIDIE | 1phase |
| EAE   | 5.4  | 0          | 1phase | 1phase     | 1phase |
| DAP   | 1.95 | 2phase     | 0      | 1phase     | 1phase |
| AP    | 1.93 | 2phase     | 0      | 0          | 1phase |
| MAE   | 1    | 2phase     | 0      | 0          | 1phase |
| AEE   | 0.68 | Immiscible | 2phase | 0          | 1phase |
| MEA   | 0.56 | 2phase     | 2phase | 0          | 0      |





- 分子ペア設計指針
- 溶解度パラメータ
- 量子化学計算(今後)
- CO<sub>2</sub>溶解度
  密度・粘度
  反応熱



- ラボプラント試験
- 分離エネルギー試算
- ・ プロセスシミュレータ

まとめ

- 相分離液 → 従来より低温度差で分離可
- CCS:相分離+ヒートポンプ 1.5 GJ/ton-CO<sub>2</sub>
- CCU:相分離+H<sub>2</sub>ストリッピング 1 GJ/ton-CO<sub>2</sub>
   (分子構造、プロセス最適化で低減の余地あり)

低温再生: 排熱利用促進、吸収液の劣化低減効果

\*1次エネルギー換算値



